ANNA UNIVERSITY, CHENNAI

NON- AUTONOMOUS COLLEGES

AFFILIATED TO ANNA UNIVERSITY

M.E. COMPUTER SCIENCE AND ENGINEERING

REGULATIONS 2025

PROGRAMME OUTCOMES (POs):

РО	Programme Outcomes
PO1	An ability to independently carry out research /investigation and development
	work to solve practical problems
PO2	An ability to write and present a substantial technical report/document.
PO3	Students should be able to demonstrate a degree of mastery over the area as per
	the specialization of the program. The mastery should be at a level higher than
	the requirements in the appropriate bachelor program

PROGRAMME SPECIFIC OUTCOMES:

PSO1: Advanced Computing and Problem Solving: Analyze, design, and implement advanced algorithms, architectures, and computational models to develop sustainable and scalable solutions, aligning with industry and societal needs to solve complex problems in diverse domains.

PSO2: Research and Innovation Competence: Undertake independent research and apply advanced tools and methodologies to propose innovative solutions for real-world and interdisciplinary computing challenges, demonstrating research aptitude.

ANNA UNIVERSITY, CHENNAI

POSTGRADUATE CURRICULUM (NON-AUTONOMOUS AFFILIATED INSTITUTIONS)

Programme: M.E. Computer Science and Engineering **Regulations:** 2025

Abbreviations:

BS – Basic Science (Mathematics) L – Laboratory Course

ES – Engineering Science (Programme Core (**PC**), **T** – Theory

Programme Elective (PE))

SD – Skill Development **LIT** – Laboratory Integrated Theory

SL – Self Learning PW – Project Work

OE – Open Elective **TCP** – Total Contact Period(s)

	Semester I									
S.	Course	Course Title	Туре	Periods per week			ТСР	Credits	Category	
No.	Code			L		Р				
1.	MA25C07	Advanced Mathematical Methods (CSIE)	Т	3	1	0	4	4	BS	
2.	CP25C01	Advanced Data Structures and Algorithms	LIT	3	0	4	7	5	ES (PC)	
3.	CP25C02	Advanced Database Technologies	Т	3	0	0	3	3	ES (PC)	
4.	CP25C03	Advanced Operating Systems	Т	3	0	0	3	3	ES (PC)	
5.	CP25C04	Advanced Compiler Design	Т	3	0	0	3	3	ES (PC)	
6.	CP25101	Technical Seminar	-	0	0	2	2	1	SD	
	Total Credits						22	19		

	Semester II									
S. No.	Course	Course Title	Periods per Week		-		ТСР	Credits	Category	
NO.	Code			L	Т	Р				
1.		Multicore Architectures	LIT	3	0	2	5	4	ES (PC)	
2.		Artificial Intelligence and Machine Learning	Т	3	0	0	3	3	ES (PC)	
3.		Cloud and Big Data Analytics	Т	3	0	0	3	3	ES (PC)	
4.		Quantum Computing	Т	2	0	0	2	2	ES (PC)	
5.		Programme Elective I	Т	3	0	0	3	3	ES (PE)	
6.		Industry Oriented Course I	-	1	0	0	1	1	SD	
7.		Industrial Training	-	-	-	-	-	2	SD	
8.		Self-Learning Course	-	-	-	-	-	1	-	
	Total Credits 17 19									

	Semester III																											
S. No.	Code	Course Code Course Title Course Title Periods per week																								ТСР	Credits	Category
No. Code			L	T	Р																							
1.		Programme Elective II	Т	3	0	0	3	3	ES(PE)																			
2.		Programme Elective III	Т	3	0	0	3	3	ES(PE)																			
3.		Programme Elective IV	Т	3	0	0	3	3	ES(PE)																			
4.		Open Elective	-	3	0	0	3	3	-																			
5.		Industry-Oriented Course II	-	1	0	0	1	1	SD																			
6.		Project Work I	-	0	0	12	12	6	SD																			
	Total Credits							19																				

	Semester IV												
S.	Course Code	Course Title	e Type			_		Periods per week		-		Credits	Category
No. Cod	Code			L	Т	Р							
1.		Project Work II	-	0	0	24	24	12	SD				
	Total Credits 24 12												

Programme Electives Courses (PE)

S. No.	Course Code	Course Title	Туре		iods wee	per k	ТСР	Credits
NO.	Code			L	T	Р		Ground
1.		Advanced Software Testing and Quality Assurance	Т	3	0	0	3	3
2.		Agile Methodologies	Т	3	0	0	3	3
3.		Web of Things	Т	3	0	0	3	3
4.		Text and Speech Processing	Т	3	0	0	3	3
5.		Advanced Deep Learning and Neural Networks	Т	3	0	0	3	3
6.		Quantum Cryptography	Т	3	0	0	3	3
7.		Quantum Machine Learning	Т	3	0	0	3	3
8.		Al in IoT	Т	3	0	0	3	3
9.		Web 3.0	Т	3	0	0	3	3
10.		Advanced Large Language Models	Т	3	0	0	3	3
11.		Edge and Fog Computing	Т	3	0	0	3	3
12.		Green Computing and Sustainability	Т	3	0	0	3	3
13.		Cognitive Computing	Т	3	0	0	3	3
14.		Agentic AI	Т	3	0	0	3	3
15.		Mixed Reality	Т	3	0	0	3	3
16.		Blockchains Architecture and Design	Т	3	0	0	3	3
17.		Human-Centered Al	Т	3	0	0	3	3
18.		Vibe Coding	Т	3	0	0	3	3
19.		Federated Learning	Т	3	0	0	3	3
20.		Deep Learning for Computer Vision	Т	3	0	0	3	3

Semester I

MA25C07	Advanced Mathematical Methods (CSIE)	L	Т	Р	С
MAZOOT	Advanced mathematical methods (ooil)	3	1	0	4

Course Objectives:

- Develop an in-depth understanding of advanced concepts in linear algebra, multivariate analysis, and number theory for computer science applications.
- Apply mathematical tools such as eigenvalue decomposition, SVD, and multivariate statistical methods to real-world computing and data-driven problems.
- Analyze and implement number-theoretic techniques for cryptography, security, and algorithmic problem-solving in computer science.

Linear Algebra: Vector spaces, norms, Inner Products, Eigenvalues using QR transformations, QR factorization, generalized eigenvectors, Canonical forms, singular value decomposition and applications, pseudo inverse, least square approximations.

Multivariate Analysis: Random vectors and matrices, Mean vectors and covariance matrices, Multivariate normal density and its properties, Principal components, Population principal components, Principal components from standardized variables.

Elementary Number Theory: The division algorithm, Divisibility and the Euclidean algorithm, The fundamental theorem of arithmetic, Modular arithmetic and basic properties of congruences; Principles of mathematical induction and well ordering principle. Primality Testing algorithms, Chinese Remainder Theorem, Quadratic Congruence.

Advanced Number Theory: Advanced Number Theory, Primality Testing algorithms, Chinese Remainder Theorem, Quadratic Congruence, Discrete Logarithm, Factorization Methods, Side Channel Attacks, Shannon Theory, Perfect Secrecy, Semantic Security.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%.

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20), Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

- 1. Gilbert Strang, *Linear Algebra and Its Applications*, Cengage Learning.
- 2. Richard A. Johnson & Dean W. Wichern, *Applied Multivariate Statistical Analysis*, Pearson.
- 3. Neal Koblitz, A Course in Number Theory and Cryptography, Springer.
- 4. Victor Shoup, *A Computational Introduction to Number Theory and Algebra*, Cambridge University Press.

E-resources:

- 1. https://ocw.mit.edu/courses/18-06-linear-algebra
- 2. https://nptel.ac.in/courses/111105041
- 3. https://crypto.stanford.edu/pbc/notes/numbertheory

CP25C01	Advanced Data Structures and Algorithms	L	Т	Р	С
01 20001	Advanced Data Otractares and Algorithms	3	0	4	5

Course Objectives:

- 1. To explore advanced linear, tree, and graph data structures and their applications.
- 2. To design efficient algorithms using appropriate algorithmic paradigms.
- 3. To evaluate computational complexity and identify tractable vs. intractable problems.

Linear Data Structures and Memory Optimization: Advanced arrays: Sparse arrays, dynamic arrays, cache-aware structures, Linked lists: Skip lists, unrolled linked lists, XOR linked lists, Stacks and Queues: Priority queues, double-ended queues, circular buffers, Hashing: Perfect hashing, cuckoo hashing, extendible hashing.

Practical:

- Implement skip lists and measure performance compared with balanced BST.
- Experiment with cache-aware data structures and analyze memory utilization.

Advanced Tree Data Structures: Balanced Trees: AVL, Red-Black Trees, Splay Trees, Treaps, Multi-way Trees: B-Trees, B+ Trees, R-Trees, Segment Trees, Fenwick Trees, Suffix Trees and Tries for string processing, Applications in indexing, text retrieval, computational geometry.

Practical:

- Implement B+ tree for database indexing use-case.
- Design a suffix tree-based algorithm for DNA sequence matching.

Graph Data Structures and Algorithms: Representation: Adjacency list/matrix, incidence matrix, compressed storage, Traversals: DFS, BFS with applications, Shortest Path Algorithms: Dijkstra, Bellman-Ford, Floyd-Warshall, Johnson's algorithm, Minimum Spanning Trees: Prim's, Kruskal's, Borůvka's algorithm, Network Flow Algorithms: Ford-Fulkerson, Edmonds-Karp, Push-Relabel.

Practical:

- Implement Johnson's algorithm for sparse graph shortest paths.
- Demonstration of Maximum flow in traffic or network routing simulation.

Algorithm Design and Paradigms: Divide and Conquer: Karatsuba's multiplication, Strassen's algorithm, Greedy Methods: Huffman coding, interval scheduling, set cover approximation, Dynamic Programming: Matrix chain multiplication, Floyd-Warshall, knapsack variants, Backtracking and Branch-and-Bound, Randomized Algorithms and Probabilistic Analysis.

Practical:

- Implement Strassen's algorithm and compare with naive matrix multiplication.
- Develop a randomized algorithm for primality testing (Miller–Rabin).

Computational Complexity and Approximation Algorithms: Complexity Classes: P, NP, NP-Complete, NP-Hard, Reductions: Polynomial-time reductions, Cook-Levin theorem (overview), Approximation Algorithms: Vertex cover, set cover, TSP, k-center problem, Heuristic Algorithms: Local search, simulated annealing, genetic algorithms.

Practical:

- Implement approximation algorithm for vertex cover.
- Complexity analysis of a chosen NP-hard problem and implement a heuristic.

Advanced Topics and Emerging Trends: Randomized Algorithms – Monte Carlo Algorithms, Parallel and Distributed Algorithms – PRAM Model, Divide and Conquer in Parallel, Load Balancing, Streaming Algorithms – Data Stream Models, Sketching and Sampling, Frequency Moments, Advanced String Matching – Suffix Trees, Suffix Arrays, Pattern Matching in Linear Time.

Practical:

- Implement randomized and streaming algorithms on real-world datasets.
- Design of parallel and distributed algorithms.

Weightage: Continuous Assessment: 50%, End Semester Examinations: 50%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20), Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20)

References:

- 1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. MIT Press.
- 2. La Rocca, M. (2021). Advanced algorithms and data structures. Manning Publications.
- 3. Goodrich, M. T., Tamassia, R., & Mount, D. M. (2011). Data structures and algorithms in C++. John Wiley & Sons, Inc.
- 4. Weiss, M. A. (2014). Data structures and algorithm analysis in C++. Pearson Education.
- 5. Drozdek, A. (2013). Data structures and algorithms in C++. Cengage Publications.

E-resources:

- 1. https://www.theiotacademy.co/blog/data-structures-and-algorithms-in-c/
- 2. https://github.com/afrid18/Data structures and algorithms in cpp
- 3. https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-in-c/?srsltid=AfmBOorEZlkgV7QzaEh6lqzAaKLjC-lpFU1NGgWFoHMLhOos-uDVKjCK

	Description of CO	РО	PSO
CO1	Describe data structures and implement algorithmic solutions for complex computational problems.	-1	
CO2	Analyze the time complexity and efficiency of algorithms for various computing problems.	PO1(3)	PSO1(3)
CO3	Evaluate algorithmic techniques and data structures to determine their suitability for different applications.	PO3(2)	PSO2(2)
CO4	Design optimized solutions for real-world problems using appropriate algorithms and data structures.	PO2(1)	PSO1(3)

CP25C02	Advanced Database Technologies	L	Т	Р	C
01 20002	Advanced Batabase recimologies	3	0	0	3

Prerequisites for the course: Database Management systems

Course Objectives:

- To strengthen the understanding of enhanced ER models and their transformation into relational models with indexing and file structures.
- To understand object-oriented and object-relational database concepts and querying using OQL.
- To explore techniques in query processing, execution, and optimization strategies.

Entity Relationship Model: Entity Relationship Model Revised-Subclasses, Superclasses and Inheritance -Specialization and Generalization-Union Types-Aggregation.

Activity: Design ER Model for a specific use case.

Enhanced Entity Relational Model: Relational Model Revised, Converting ER and EER Model to Relational Model-SQL and Advanced Features, File Structures, Hashing, and Indexing.

Activity: Demonstration of SQL Implementation.

Object Relational Databases: Object Database Concepts-Object Database Extensions to SQL, The ODMG Object Model and ODL, Object Database Conceptual Design-Object Query Language OQL-Language Binding in the ODMG Standard.

Activity: Demonstration of Object Query Language.

Query Processing and Optimization: Query Processing, Query Trees and Heuristics, Query Execution Plans, Cost Based Optimization.

Activity: Design of Query Evaluation Plans.

Distributed Databases: Real-Time Bidding, E-mail Marketing, Affiliate Marketing, Social Marketing Mobile Marketing, Distributed Database Concepts, Data Fragmentation, Replication and Allocation, Distributed Database Design Techniques, Distributed Database Design Techniques, Distributed Database Architectures.

Activity: Demonstration of Concurrency and Transactions.

NOSQL Systems and Bigdata: Introduction to NOSQL Systems-The CAP Theorem, Document, based NOSQL Systems, Key-value Stores, Column-Based or Wide Column NOSQL Systems, NOSQL Graph Databases and Neo4j.

Activity: Design application with MongoDB.

Advanced Database Models, Systems and Applications: Active Database Concepts and Triggers, Temporal Database Concepts, Spatial Database Concepts, Multimedia Database Concepts, Deductive Database Concepts, Introduction to Information Retrieval and Web Search.

Activity: Demonstration of Hadoop infrastructure for Big Data Analytics.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20), Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

- 1. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of database systems. Pearson Education.
- 2. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2020). Database system concepts, McGraw Hill Education.
- 3. Ceri, S., & Pelagatti, G. Distributed databases: Principles and systems. McGraw Hill
- 4. Ramakrishnan, R., & Gehrke, J. (2004). Database management systems. McGraw Hill.

E-resources:

- 1. https://www.edx.org/learn/sql/stanford-university-databases-advanced-topics-in-sql
- 2. https://www.coursera.org/courses?query=sql&productDifficultyLevel=Advanced

	Description of CO	РО	PSO
CO1	Elaborate different database models for effective database design.		
CO2	Implement advanced database features for optimized data retrieval.	PO1(3)	PSO1(3)
CO3	Evaluate query processing and optimization strategies to improve system performance.	PO3(2)	PSO2(2)
CO4	Design solutions using advanced database models to address complex data-intensive applications.	PO2(1)	PSO1(3)

CP25C03	Advanced Operating Systems	L	Т	Р	С
01 23003	Advanced Operating Systems	3	0	0	3

Course Objectives:

- To analyze the architectures and design issues of advanced operating systems.
- To develop the model for process synchronization and recovery in complex environments.
- To evaluate algorithms for distributed coordination, resource management, fault tolerance, and security.

Advanced Process and Thread Management: Multithreading models, thread pools, context switching, Synchronization issues and solutions: semaphores, monitors, lock-free data structures, CPU scheduling in multi-core systems

Activity: CPU scheduler simulation for multicore systems.

Memory and Resource Management in Modern OS: Virtual memory, demand paging, page replacement policies-Huge pages, NUMA-aware memory management-Resource allocation in cloud-native environments

Activity: Simulate demand paging and page replacement algorithms.

Virtualization and Containerization: Hypervisors (Type I & II), KVM, QEMU, Xen-Containers: Docker, LXC, systemd-nspawn-OS-level virtualization and namespaces

Activity: Deploy and configure Docker containers with various images.

Distributed Operating Systems and File Systems: Distributed scheduling, communication, and synchronization-Distributed file systems: NFS, GFS, HDFS-Transparency issues and fault tolerance

Activity: Simulate distributed process synchronization.

Security and Trust in Operating Systems: Access control models: DAC, MAC, RBAC-OS hardening techniques, sandboxing, SELinux, AppArmor-Secure boot, rootkit detection, trusted execution environments

Activity: Implement Role-Based Access Control (RBAC) using Linux user and group permissions.

Real-Time and Embedded Operating Systems: Real-time scheduling algorithms (EDF, RM)-POSIX RT extensions, RTOS architecture-TinyOS, FreeRTOS case studies

Activity: Analyze FreeRTOS task scheduling behavior.

Edge and Cloud OS: Future Paradigms: Serverless OS, unikernels, lightweight OS for edge computing-Mobile OS internals (Android, iOS)-OS for quantum and neuromorphic computing (intro)

Activity: Analyze Android's system architecture using emulator tools.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20), Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

- 1. Tanenbaum, A. S., & Bos, H. (2023). Modern operating systems. Pearson.
- 2. Buyya, R., et al. (2022). Content delivery networks and emerging operating systems. Springer.
- 3. Silberschatz, A., Galvin, P. B., & Gagne, G. (2022). Operating system concepts. Wiley.
- 4. Anderson, T., & Dahlin, M. (2021). Operating systems: Principles and practice. Recursive Books.
- 5. Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. C. (2020). Operating systems: Three easy pieces.

E-Resources:

- 1. Prof. Smruti Ranjan Sarangi, "Advanced Distributed Systems", IIT Delhi, NPTEL, https://onlinecourses.nptel.ac.in/noc22 cs80/preview
- 2. Prof. Rajiv Misra, "Cloud Computing and Distributed Systems", IIT Patna, NPTEL, https://nptel.ac.in/courses/106104182

	Description of CO	РО	PSO
CO1	Describe operating system concepts for memory and resource management.	-1	
CO2	Analyse virtualization and distributed OS mechanisms for scalability and performance.	PO1(3)	PSO1(3)
CO3	Evaluate OS security and resource handling strategies in diverse environments.		PSO2(2)
CO4	Design innovative OS solutions using modern tools and techniques.	PO2(1)	PSO1(3)

CP25C04	Advanced Compiler Design	L	Т	Р	С
01 20004		3	0	0	3

Course Objective:

- To analyze the theory and principles of modern compiler design and advanced optimization techniques.
- To design and implement efficient front-end and back-end compiler components for programming languages.
- To evaluate code optimization strategies and runtime environment management in contemporary architectures.

Intermediate Representations and Control Flow Analysis: Static single assignment (SSA) form- Context-Free Grammer (CFG) construction-dominance relations-Intermediate Representation (IR) design for functional and imperative languages-Static single assignment and def-use chains

Activities:

- 1. Convert source code to SSA form using LLVM IR.
- 2. Visualize control flow graphs from SSA using LLVM tools.

Program Analysis and Transformations: Data flow analysis- live variable analysis-reaching definitions-Alias analysis and dependence analysis-Loop optimizations and transformations

Activities:

- 1. Perform loop unrolling and strength reduction.
- 2. Conduct live variable analysis and visualize data flow graphs.

Advanced Optimizations and Polyhedral Compilation: Polyhedral model for loop nests-Tiling, skewing, fusion, and vectorization-Profile-guided and feedback-directed optimizations

Activities:

- 1. Implement loop tiling and loop skewing on a matrix multiplication program.
- 2. Analyze the effect on loop-intensive code with LLVM optimization flags.

Just-in-Time (JIT) and Runtime Compilation: JIT compilation models: tracing, method-based-GraalVM architecture, Java HotSpot internals-LLVM JIT and dynamic language support

Activities:

- 1. Develop a basic JIT-enabled interpreter with LLVM or GraalVM.
- 2. Implement dynamic dispatch using LLVM JIT API.

Machine Learning in Compiler Design: ML for phase ordering, auto-tuning, and IR prediction-Reinforcement learning for optimization passes-Dataset creation and benchmarking for compiler ML

Activities:

- 1. Train an ML model to predict optimization passes.
- 2. Use reinforcement learning for pass selection in toy compiler.

Domain-Specific Languages (DSLs) and Compiler Extensions: Designing DSLs for AI/ML, DSP, graphics-Code generation for custom accelerators-Integration with TensorFlow XLA and Halide

Activities:

- 1. Design and test a simple DSL grammar using ANTLR.
- 2. Integrate a DSL with TensorFlow XLA or Halide.

Security, Verification, and Future Trends: Secure compilation and type-safe intermediate representations-Compiler fuzzing and formal verification (e.g., CompCert)-Quantum compilers, multi-target compilers, and neuromorphic systems

Activities:

- 1. Use CompCert to verify compilation of simple programs.
- 2. Apply compiler fuzzing using tools like libFuzzer.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20), Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

- 1. Cooper, K. D., & Torczon, L. (2023). Engineering a compiler. Morgan Kaufmann.
- 2. Grune, D., Bal, H. E., Jacobs, C. J. H., & Langendoen, K. G. (2012). Modern compiler design (2nd ed.). Springer.
- 3. Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles, techniques, and tools (2nd ed.). Pearson.
- 4. Völter, M. (2013). DSL engineering: Designing, implementing and using domainspecific languages. dslbook.org.
- 5. Sarda, S., & Pandey, M. (2015). LLVM essentials. Packt Publishing.

E-Resources:

- 1. Prof. AmeyKarkare, IIT Kanpur, "Advanced Compiler Optimizations" Link: https://www.cse.iitk.ac.in/users/karkare/Courses/cs738/
- 2. Prof. Santanu Chattopadhyay, "Compiler Design", IIT Kharagpur Link: https://onlinecourses.nptel.ac.in/noc21_cs07/preview"

	Description of CO	РО	PSO
CO1	Explain intermediate control flow techniques in compiler design.		
CO2	Apply program analysis techniques and advanced optimizations for design of compilers.	PO1(3)	PSO1(3)
CO3	Develop compiler features and machine learning techniques for optimization.	PO3(2)	PSO2(2)
CO4	Evaluate secure compilation strategies for quantum and multi-target compilation.	PO2(1)	PSO1(3)