
1

ANNA UNIVERSITY, CHENNAI

NON- AUTONOMOUS COLLEGES

AFFILIATED TO ANNA UNIVERSITY

M.E. COMPUTER SCIENCE AND ENGINEERING

REGULATIONS 2025

PROGRAMME OUTCOMES (POs):

PO Programme Outcomes

PO1 An ability to independently carry out research /investigation and development

work to solve practical problems

PO2 An ability to write and present a substantial technical report/document.

PO3 Students should be able to demonstrate a degree of mastery over the area as per

the specialization of the program. The mastery should be at a level higher than

the requirements in the appropriate bachelor program

PROGRAMME SPECIFIC OUTCOMES:

PSO1: Advanced Computing and Problem Solving: Analyze, design, and implement

advanced algorithms, architectures, and computational models to develop

sustainable and scalable solutions, aligning with industry and societal needs to

solve complex problems in diverse domains.

PSO2: Research and Innovation Competence: Undertake independent research and apply

advanced tools and methodologies to propose innovative solutions for real-world

and interdisciplinary computing challenges, demonstrating research aptitude.

2

ANNA UNIVERSITY, CHENNAI

POSTGRADUATE CURRICULUM (NON-AUTONOMOUS AFFILIATED INSTITUTIONS)

Programme: M.E. Computer Science and Engineering Regulations: 2025

Abbreviations:

BS – Basic Science (Mathematics) L – Laboratory Course

ES – Engineering Science (Programme Core (PC),

Programme Elective (PE))

T – Theory

SD – Skill Development LIT – Laboratory Integrated Theory

SL – Self Learning PW – Project Work

OE – Open Elective TCP – Total Contact Period(s)

Semester I

S.
No.

Course
Code

Course Title Type

Periods
per week TCP Credits

 Category

L T P

1. MA25C07
Advanced Mathematical

Methods (CSIE)
T 3 1 0 4 4

BS

2. CP25C01
Advanced Data Structures

and Algorithms
LIT 3 0 4 7 5 ES (PC)

3. CP25C02
Advanced Database

Technologies
T 3 0 0 3 3 ES (PC)

4. CP25C03
Advanced Operating

Systems
T 3 0 0 3 3 ES (PC)

5. CP25C04 Advanced Compiler Design T 3 0 0 3 3 ES (PC)

6. CP25101 Technical Seminar - 0 0 2 2 1 SD

Total Credits 22 19

3

Semester II

S.

No.

Course

Code
Course Title Type

Periods per

week TCP Credits

 Category

L T P

1. Multicore Architectures LIT 3 0 2 5 4 ES (PC)

2.
Artificial Intelligence and

Machine Learning
T 3 0 0 3 3 ES (PC)

3.
Cloud and Big Data

Analytics
T 3 0 0 3 3 ES (PC)

4. Quantum Computing T 2 0 0 2 2 ES (PC)

5. Programme Elective I T 3 0 0 3 3 ES (PE)

6. Industry Oriented Course I - 1 0 0 1 1 SD

7. Industrial Training - - - - - 2 SD

8. Self-Learning Course - - - - - 1 -

Total Credits 17 19

Semester III

S.

No.

Course

Code
Course Title Type

Periods

per week TCP Credits

 Category

L T P

1. Programme Elective II T 3 0 0 3 3 ES(PE)

2. Programme Elective III T 3 0 0 3 3 ES(PE)

3. Programme Elective IV T 3 0 0 3 3 ES(PE)

4. Open Elective - 3 0 0 3 3 -

5. Industry-Oriented Course II - 1 0 0 1 1 SD

6. Project Work I - 0 0 12 12 6 SD

Total Credits 25 19

Semester IV

S.

No.

Course

Code
Course Title Type

Periods per

week TCP Credits

Category

L T P

1. Project Work II - 0 0 24 24 12 SD

 Total Credits 24 12

4

Programme Electives Courses (PE)

S.

No.

Course

Code
Course Title Type

Periods per

week TCP Credits
L T P

1.
 Advanced Software Testing

and Quality Assurance
T 3 0 0 3 3

2. Agile Methodologies T 3 0 0 3 3

3. Web of Things T 3 0 0 3 3

4. Text and Speech Processing T 3 0 0 3 3

5.
 Advanced Deep Learning and

Neural Networks
T 3 0 0 3 3

6. Quantum Cryptography T 3 0 0 3 3

7. Quantum Machine Learning T 3 0 0 3 3

8. AI in IoT T 3 0 0 3 3

9. Web 3.0 T 3 0 0 3 3

10.
 Advanced Large Language

Models
T 3 0 0 3 3

11. Edge and Fog Computing T 3 0 0 3 3

12.
 Green Computing and

Sustainability
T 3 0 0 3 3

13. Cognitive Computing T 3 0 0 3 3

14. Agentic AI T 3 0 0 3 3

15. Mixed Reality T 3 0 0 3 3

16.
 Blockchains Architecture and

Design
T 3 0 0 3 3

17. Human-Centered AI T 3 0 0 3 3

18. Vibe Coding T 3 0 0 3 3

19. Federated Learning T 3 0 0 3 3

20.
 Deep Learning for Computer

Vision
T 3 0 0 3 3

5

Semester I

6

MA25C07 Advanced Mathematical Methods (CSIE)
L T P C

3 1 0 4

Course Objectives:

• Develop an in-depth understanding of advanced concepts in linear algebra,

multivariate analysis, and number theory for computer science applications.

• Apply mathematical tools such as eigenvalue decomposition, SVD, and

multivariate statistical methods to real-world computing and data-driven

problems.

• Analyze and implement number-theoretic techniques for cryptography,

security, and algorithmic problem-solving in computer science.

Linear Algebra: Vector spaces, norms, Inner Products, Eigenvalues using QR

transformations, QR factorization, generalized eigenvectors, Canonical forms,

singular value decomposition and applications, pseudo inverse, least square

approximations.

Multivariate Analysis: Random vectors and matrices, Mean vectors and covariance

matrices, Multivariate normal density and its properties, Principal components,

Population principal components, Principal components from standardized variables.

Elementary Number Theory: The division algorithm, Divisibility and the Euclidean

algorithm, The fundamental theorem of arithmetic, Modular arithmetic and basic

properties of congruences; Principles of mathematical induction and well ordering

principle. Primality Testing algorithms, Chinese Remainder Theorem, Quadratic

Congruence.

Advanced Number Theory: Advanced Number Theory, Primality Testing

algorithms, Chinese Remainder Theorem, Quadratic Congruence, Discrete

Logarithm, Factorization Methods, Side Channel Attacks, Shannon Theory, Perfect

Secrecy, Semantic Security.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%.

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20),
Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

1. Gilbert Strang, Linear Algebra and Its Applications, Cengage Learning.
2. Richard A. Johnson & Dean W. Wichern, Applied Multivariate Statistical Analysis,

Pearson.
3. Neal Koblitz, A Course in Number Theory and Cryptography, Springer.
4. Victor Shoup, A Computational Introduction to Number Theory and Algebra,

Cambridge University Press.

7

E-resources:
1. https://ocw.mit.edu/courses/18-06-linear-algebra

2. https://nptel.ac.in/courses/111105041

3. https://crypto.stanford.edu/pbc/notes/numbertheory

https://ocw.mit.edu/courses/18-06-linear-algebra
https://nptel.ac.in/courses/111105041
https://crypto.stanford.edu/pbc/notes/numbertheory

8

CP25C01 Advanced Data Structures and Algorithms
L T P C

3 0 4 5

Course Objectives:

1. To explore advanced linear, tree, and graph data structures and their

applications.

2. To design efficient algorithms using appropriate algorithmic paradigms.

3. To evaluate computational complexity and identify tractable vs. intractable

problems.

Linear Data Structures and Memory Optimization: Advanced arrays: Sparse

arrays, dynamic arrays, cache-aware structures, Linked lists: Skip lists, unrolled

linked lists, XOR linked lists, Stacks and Queues: Priority queues, double-ended

queues, circular buffers, Hashing: Perfect hashing, cuckoo hashing, extendible

hashing.

Practical:

• Implement skip lists and measure performance compared with balanced BST.

• Experiment with cache-aware data structures and analyze memory utilization.

Advanced Tree Data Structures: Balanced Trees: AVL, Red-Black Trees, Splay

Trees, Treaps, Multi-way Trees: B-Trees, B+ Trees, R-Trees, Segment Trees,

Fenwick Trees, Suffix Trees and Tries for string processing, Applications in indexing,

text retrieval, computational geometry.

Practical:

• Implement B+ tree for database indexing use-case.

• Design a suffix tree-based algorithm for DNA sequence matching.

Graph Data Structures and Algorithms: Representation: Adjacency list/matrix,

incidence matrix, compressed storage, Traversals: DFS, BFS with applications,

Shortest Path Algorithms: Dijkstra, Bellman-Ford, Floyd-Warshall, Johnson’s

algorithm, Minimum Spanning Trees: Prim’s, Kruskal’s, Borůvka’s algorithm, Network

Flow Algorithms: Ford-Fulkerson, Edmonds-Karp, Push-Relabel.

Practical:

• Implement Johnson’s algorithm for sparse graph shortest paths.

• Demonstration of Maximum flow in traffic or network routing simulation.

9

Algorithm Design and Paradigms: Divide and Conquer: Karatsuba’s multiplication,

Strassen’s algorithm, Greedy Methods: Huffman coding, interval scheduling, set

cover approximation, Dynamic Programming: Matrix chain multiplication, Floyd-

Warshall, knapsack variants, Backtracking and Branch-and-Bound, Randomized

Algorithms and Probabilistic Analysis.

Practical:

• Implement Strassen’s algorithm and compare with naive matrix multiplication.

• Develop a randomized algorithm for primality testing (Miller–Rabin).

Computational Complexity and Approximation Algorithms: Complexity Classes:

P, NP, NP-Complete, NP-Hard, Reductions: Polynomial-time reductions, Cook-Levin

theorem (overview), Approximation Algorithms: Vertex cover, set cover, TSP, k-

center problem, Heuristic Algorithms: Local search, simulated annealing, genetic

algorithms.

Practical:

• Implement approximation algorithm for vertex cover.

• Complexity analysis of a chosen NP-hard problem and implement a heuristic.

Advanced Topics and Emerging Trends: Randomized Algorithms – Monte Carlo

Algorithms, Parallel and Distributed Algorithms – PRAM Model, Divide and Conquer

in Parallel, Load Balancing, Streaming Algorithms – Data Stream Models, Sketching

and Sampling, Frequency Moments, Advanced String Matching – Suffix Trees, Suffix

Arrays, Pattern Matching in Linear Time.

Practical:

• Implement randomized and streaming algorithms on real-world datasets.

• Design of parallel and distributed algorithms.

Weightage: Continuous Assessment: 50%, End Semester Examinations: 50%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20),
Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20)

References:
1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

algorithms. MIT Press.

2. La Rocca, M. (2021). Advanced algorithms and data structures. Manning

Publications.

3. Goodrich, M. T., Tamassia, R., & Mount, D. M. (2011). Data structures and

algorithms in C++. John Wiley & Sons, Inc.

4. Weiss, M. A. (2014). Data structures and algorithm analysis in C++. Pearson

Education.

5. Drozdek, A. (2013). Data structures and algorithms in C++. Cengage

Publications.

10

E-resources:

1. https://www.theiotacademy.co/blog/data-structures-and-algorithms-in-c/

2. https://github.com/afrid18/Data_structures_and_algorithms_in_cpp

3.https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-

in-c/?srsltid=AfmBOorEZlkgV7QzaEh6IqzAaKLjC-IpFU1NGgWFoHMLhOos-

uDVKjCK

 Description of CO PO PSO

CO1

Describe data structures and implement

algorithmic solutions for complex computational

problems.

-- --

CO2
Analyze the time complexity and efficiency of

algorithms for various computing problems.
PO1(3) PSO1(3)

CO3

Evaluate algorithmic techniques and data

structures to determine their

suitability for different applications.

PO3(2) PSO2(2)

CO4

Design optimized solutions for real-world

problems using appropriate algorithms and data

structures.

PO2(1)

PSO1(3)

https://github.com/afrid18/Data_structures_and_algorithms_in_cpp
https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-in-c/?srsltid=AfmBOorEZlkgV7QzaEh6IqzAaKLjC-IpFU1NGgWFoHMLhOos-uDVKjCK
https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-in-c/?srsltid=AfmBOorEZlkgV7QzaEh6IqzAaKLjC-IpFU1NGgWFoHMLhOos-uDVKjCK
https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-in-c/?srsltid=AfmBOorEZlkgV7QzaEh6IqzAaKLjC-IpFU1NGgWFoHMLhOos-uDVKjCK

11

CP25C02 Advanced Database Technologies
L T P C

3 0 0 3

Prerequisites for the course: Database Management systems

Course Objectives:

• To strengthen the understanding of enhanced ER models and their

transformation into relational models with indexing and file structures.

• To understand object-oriented and object-relational database concepts and

querying using OQL.

• To explore techniques in query processing, execution, and optimization

strategies.
•

Entity Relationship Model: Entity Relationship Model Revised-Subclasses,

Superclasses and Inheritance -Specialization and Generalization-Union Types-

Aggregation.

Activity: Design ER Model for a specific use case.

Enhanced Entity Relational Model: Relational Model Revised, Converting ER and

EER Model to Relational Model-SQL and Advanced Features, File Structures,

Hashing, and Indexing.

Activity: Demonstration of SQL Implementation.

Object Relational Databases: Object Database Concepts-Object Database

Extensions to SQL, The ODMG Object Model and ODL, Object Database

Conceptual Design-Object Query Language OQL-Language Binding in the ODMG

Standard.

Activity: Demonstration of Object Query Language.

Query Processing and Optimization: Query Processing, Query Trees and

Heuristics, Query Execution Plans, Cost Based Optimization.

Activity: Design of Query Evaluation Plans.

Distributed Databases: Real-Time Bidding, E-mail Marketing, Affiliate Marketing,

Social Marketing Mobile Marketing, Distributed Database Concepts, Data

Fragmentation, Replication and Allocation, Distributed Database Design

Techniques, Distributed Database Design Techniques, Distributed Database

Architectures.

Activity: Demonstration of Concurrency and Transactions.

12

NOSQL Systems and Bigdata: Introduction to NOSQL Systems-The CAP

Theorem, Document, based NOSQL Systems, Key-value Stores, Column-Based or

Wide Column NOSQL Systems, NOSQL Graph Databases and Neo4j.

Activity: Design application with MongoDB.

Advanced Database Models, Systems and Applications: Active Database

Concepts and Triggers, Temporal Database Concepts, Spatial Database Concepts,

Multimedia Database Concepts, Deductive Database Concepts, Introduction to

Information Retrieval and Web Search.

Activity: Demonstration of Hadoop infrastructure for Big Data Analytics.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20),

Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

1. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of database systems.

Pearson Education.

2. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2020). Database system

concepts, McGraw Hill Education.

3. Ceri, S., & Pelagatti, G. Distributed databases: Principles and systems. McGraw

Hill.

4. Ramakrishnan, R., & Gehrke, J. (2004). Database management systems.

McGraw Hill.

E-resources:

1. https://www.edx.org/learn/sql/stanford-university-databases-advanced-topics-in-
sql

2. https://www.coursera.org/courses?query=sql&productDifficultyLevel=Advanced

 Description of CO PO PSO

CO1
Elaborate different database models for effective

database design.
-- --

CO2
Implement advanced database features for optimized

data retrieval.
PO1(3) PSO1(3)

CO3
Evaluate query processing and optimization

strategies to improve system performance.
PO3(2) PSO2(2)

CO4
Design solutions using advanced database models to
address complex data-intensive applications.

PO2(1)

PSO1(3)

https://www.edx.org/learn/sql/stanford-university-databases-advanced-topics-in-sql
https://www.edx.org/learn/sql/stanford-university-databases-advanced-topics-in-sql
https://www.coursera.org/courses?query=sql&productDifficultyLevel=Advanced

13

CP25C03 Advanced Operating Systems
L T P C

3 0 0 3

Course Objectives:

• To analyze the architectures and design issues of advanced operating systems.

• To develop the model for process synchronization and recovery in complex

environments.

• To evaluate algorithms for distributed coordination, resource management, fault

tolerance, and security.

Advanced Process and Thread Management: Multithreading models, thread

pools, context switching, Synchronization issues and solutions: semaphores,

monitors, lock-free data structures, CPU scheduling in multi-core systems

Activity: CPU scheduler simulation for multicore systems.

Memory and Resource Management in Modern OS: Virtual memory, demand

paging, page replacement policies-Huge pages, NUMA-aware memory

management-Resource allocation in cloud-native environments

Activity: Simulate demand paging and page replacement algorithms.

Virtualization and Containerization: Hypervisors (Type I & II), KVM, QEMU, Xen-

Containers: Docker, LXC, systemd-nspawn-OS-level virtualization and namespaces

Activity: Deploy and configure Docker containers with various images.

Distributed Operating Systems and File Systems: Distributed scheduling,

communication, and synchronization-Distributed file systems: NFS, GFS, HDFS-

Transparency issues and fault tolerance

Activity: Simulate distributed process synchronization.

Security and Trust in Operating Systems: Access control models: DAC, MAC,

RBAC-OS hardening techniques, sandboxing, SELinux, AppArmor-Secure boot,

rootkit detection, trusted execution environments

Activity: Implement Role-Based Access Control (RBAC) using Linux user and group

permissions.

Real-Time and Embedded Operating Systems: Real-time scheduling algorithms

(EDF, RM)-POSIX RT extensions, RTOS architecture-TinyOS, FreeRTOS case

studies

Activity: Analyze FreeRTOS task scheduling behavior.

14

Edge and Cloud OS: Future Paradigms: Serverless OS, unikernels, lightweight

OS for edge computing-Mobile OS internals (Android, iOS)-OS for quantum and

neuromorphic computing (intro)

Activity: Analyze Android’s system architecture using emulator tools.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20),
Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

1. Tanenbaum, A. S., & Bos, H. (2023). Modern operating systems. Pearson.

2. Buyya, R., et al. (2022). Content delivery networks and emerging operating

systems. Springer.

3. Silberschatz, A., Galvin, P. B., & Gagne, G. (2022). Operating system concepts.

Wiley.

4. Anderson, T., & Dahlin, M. (2021). Operating systems: Principles and practice.

Recursive Books.

5. Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. C. (2020). Operating systems:

Three easy pieces.

E-Resources:

1. Prof. Smruti Ranjan Sarangi, “Advanced Distributed Systems”, IIT Delhi, NPTEL,

https://onlinecourses.nptel.ac.in/noc22_cs80/preview

2. Prof. Rajiv Misra, “Cloud Computing and Distributed Systems”, IIT Patna, NPTEL,

https://nptel.ac.in/courses/106104182

 Description of CO PO PSO

CO1
Describe operating system concepts for memory and
resource management.

-- --

CO2
Analyse virtualization and distributed OS mechanisms for

scalability and performance.
PO1(3) PSO1(3)

CO3
Evaluate OS security and resource handling strategies in

diverse environments.
PO3(2) PSO2(2)

CO4
Design innovative OS solutions using modern tools and

techniques.
PO2(1)

PSO1(3)

https://www.youtube.com/playlist?list=PLLDC70psjvq5hIT0kfr1sirNuees0NIbG
https://onlinecourses.nptel.ac.in/noc22_cs80/preview
https://nptel.ac.in/courses/106104182

15

CP25C04 Advanced Compiler Design
L T P C

3 0 0 3

Course Objective:

• To analyze the theory and principles of modern compiler design and advanced

optimization techniques.

• To design and implement efficient front-end and back-end compiler components

for programming languages.

• To evaluate code optimization strategies and runtime environment management

in contemporary architectures.

Intermediate Representations and Control Flow Analysis: Static single

assignment (SSA) form- Context-Free Grammer (CFG) construction-dominance

relations-Intermediate Representation (IR) design for functional and imperative

languages-Static single assignment and def-use chains

Activities:

1. Convert source code to SSA form using LLVM IR.
2. Visualize control flow graphs from SSA using LLVM tools.

Program Analysis and Transformations: Data flow analysis- live variable analysis-

reaching definitions-Alias analysis and dependence analysis-Loop optimizations and

transformations

Activities:

1. Perform loop unrolling and strength reduction.

2. Conduct live variable analysis and visualize data flow graphs.

Advanced Optimizations and Polyhedral Compilation: Polyhedral model for loop

nests-Tiling, skewing, fusion, and vectorization-Profile-guided and feedback-directed

optimizations

Activities:

1. Implement loop tiling and loop skewing on a matrix multiplication program.

2. Analyze the effect on loop-intensive code with LLVM optimization flags.

Just-in-Time (JIT) and Runtime Compilation: JIT compilation models: tracing,

method-based-GraalVM architecture, Java HotSpot internals-LLVM JIT and dynamic

language support

Activities:

1. Develop a basic JIT-enabled interpreter with LLVM or GraalVM.
2. Implement dynamic dispatch using LLVM JIT API.

16

Machine Learning in Compiler Design: ML for phase ordering, auto-tuning, and IR

prediction-Reinforcement learning for optimization passes-Dataset creation and

benchmarking for compiler ML

Activities:

1. Train an ML model to predict optimization passes.

2. Use reinforcement learning for pass selection in toy compiler.

Domain-Specific Languages (DSLs) and Compiler Extensions: Designing DSLs

for AI/ML, DSP, graphics-Code generation for custom accelerators-Integration with

TensorFlow XLA and Halide

Activities:

1. Design and test a simple DSL grammar using ANTLR.

2. Integrate a DSL with TensorFlow XLA or Halide.

Security, Verification, and Future Trends: Secure compilation and type-safe

intermediate representations-Compiler fuzzing and formal verification (e.g.,

CompCert)-Quantum compilers, multi-target compilers, and neuromorphic systems

Activities:

1. Use CompCert to verify compilation of simple programs.

2. Apply compiler fuzzing using tools like libFuzzer.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20),
Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

1. Cooper, K. D., & Torczon, L. (2023). Engineering a compiler. Morgan Kaufmann.

2. Grune, D., Bal, H. E., Jacobs, C. J. H., & Langendoen, K. G. (2012). Modern

compiler design (2nd ed.). Springer.

3. Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,

techniques, and tools (2nd ed.). Pearson.

4. Völter, M. (2013). DSL engineering: Designing, implementing and using domain-

specific languages. dslbook.org.

5. Sarda, S., & Pandey, M. (2015). LLVM essentials. Packt Publishing.

E-Resources:

1. Prof. AmeyKarkare, IIT Kanpur, “Advanced Compiler Optimizations”

Link: https://www.cse.iitk.ac.in/users/karkare/Courses/cs738/

2. Prof. Santanu Chattopadhyay, “Compiler Design”, IIT Kharagpur

Link:” https://onlinecourses.nptel.ac.in/noc21_cs07/preview”

https://www.cse.iitk.ac.in/users/karkare/Courses/cs738/
https://onlinecourses.nptel.ac.in/noc21_cs07/preview

17

 Description of CO PO PSO

CO1
Explain intermediate control flow techniques in
compiler design.

-- --

CO2
Apply program analysis techniques and advanced
optimizations for design of compilers.

PO1(3) PSO1(3)

CO3
Develop compiler features and machine learning
techniques for optimization.

PO3(2) PSO2(2)

CO4
Evaluate secure compilation strategies for
quantum and multi-target compilation.

PO2(1)

PSO1(3)

